LINIERISASI ITERATIF PADA METODE BEDA HINGGA UNTUK MEYELESAIKAN MASALAH KONDISI BATAS DIRICHLET PERSAMAN DIFERENSIAL BIASA NON LINIER

Authors

  • Hery Andi Sitompul Universitas Universitas Darma Agung
  • Enzo W.B.Siahaan Universitas Universitas Darma Agung
  • Antonius Simamora herystpl@gmail.com
  • Togar Timoteus Gultom Universitas Prima Indonesia
  • Arfis A Universitas Muhammadiyah Sumatera Utara
  • Mulia Mulia Universitas Tjut nyak Dhien, Indonesia

DOI:

https://doi.org/10.47662/alulum.v13i1.850

Keywords:

linearization, Dirichlet limits, differential equations

Abstract

Dirichlet boundary condition problems in nonlinear ordinary differential equations generally have to be worked out numerically by applying the concept of finite differences, producing a system of non-linear equations. The Newton and Broyden methods are very popular for solving a system of non-linear equations, but both require very long calculation times if the variables are on a large scale. The concept of iterative linearization of a system of non-linear equations produced by the finite difference method in a nonlinear differential equation, it will provide new insight into the problem of Dirichlet boundary conditions.

References

Awang, R. (2023). Perbedaan Persamaan Linear Dan Non Linear Perbedaan Persamaan Linear Dan Non Linear. February.

Batiha, B. M. (2014). Application Of Variational Iteration Method To Linear Partial Differential Application Of Variational Iteration Method It Is Well Known That Many Phenomena In Scientific Fields Can Be Described. May.

Fisika, P. S. (2019). Aplikasi Matlab Pada Teknologi Pencitraan Medis. 1(1), 28–34.

Ganda, N. B. (N.D.). Metode Iterasi Tiga Langkah Dengan Orde Konvergensi Lima Untuk Menyelesaikan Persamaan Nonlinear Berakar Ganda Zuhnia Lega 1 ? , Agusni 2 , Supriadi Putra 2. 1(2), 91–101.

Gorontalo, U. N. (2018). Persamaan diferensial biasa. September.

Ii, B. A. B. (2006). Bab ii landasan teori 2.1. 1–10.

Ii, B. A. B., & Teori, L. (2010). dan pemodelan matematika. A. Persamaan Diferensial Definisi 2.1 (Ross, 2010: 3). 2, 8–35.

Lutfina, E., Inayati, N., & Saraswati, G. W. (2022). Analisis Perbandingan Kinerja Metode Rekursif dan Metode Iteratif dalam Algoritma Linear Search A Comparative Analysis of the Performance of Recursive Methods and Iterative Methods in Linear Search Algorithms. 11(28). https://doi.org/10.34010/komputika.v11i2.5493

Maya, R. (2014). Persamaan Diferensial Biasa.

Metode, M., Variabel, P., Matematika, J., Statistika, K., Nomor, V., Agustus, M., Nomor, V., & Agustus, M. (2023). , Herdi Budiman 2) , Wayan Somayasa 3) dan La Pimpi 4) ,. 3, 330–336. No Title. (n.d.).

Syarat, D., Dirichlet, B., Neumann, D., & Utomo, R. B. (2016). Persamaan Differensial Parsial Gelombang Homogen Pada Selang. 2(2), 56–66.

Tahun, V. N. (2023). Jurnal Al Ulum LPPM Universitas Al Washliyah Medan Jurnal Al Ulum LPPM Universitas Al Washliyah Medan. 11(2).

Yulianto, T., & Amalia, R. (2016). Penerapan Metode Beda Hingga pada Model Matematika Aliran Banjir dari Persamaan Saint Venant. 2(1).

Zainudin, A., & St, S. (2014). Penyelesaian Persamaan Non Linear Metode Iterasi Konsep Metode Iterasi.

Downloads

Published

2025-01-28