PEMANFAATAN BELALANG SEBAGAI SUMBER KITIN MELALUI PROSES EKSTRAKSI RAMAH LINGKUNGAN
DOI:
https://doi.org/10.47662/alulum.v13i2.912Keywords:
belalang hijau, DES, Kitin, Ramah LingkunganAbstract
This study aimed to extract chitin from rice grasshoppers using the Deep Eutectic Solvent (DES) method. The chitin extraction process involves several stages, namely delipidation, demineralization, and deproteination. In the demineralization and deproteination stages, two extraction methods were compared, namely the conventional method using strong acids and bases and the environmentally friendly method using Deep Eutectic Solvent (DES). The conventional method uses hydrochloric acid (HCl) for demineralization and sodium hydroxide (NaOH) for deproteination. DES is an effective solvent in dissolving proteins without damaging the chitin structure. This success was evidenced by test parameters of fat content from 30.91 to 9.01 with a DL percentage of 70.85%. In the ash content test, it was proven that the % ash content in pure grasshoppers was 4.87% and decreased in the demineralization process to 1.38% for the extraction stage using DES from 1.25 in the extraction process using the conventional method, this shows that the demineralization extraction process was successful in reducing mineral levels. In the protein content test, pure grasshoppers were 53.57% decreased in the deproteination process using DES to 1.11% and in the conventional method using NaOH, it decreased by 1.65%, this proves a decrease in protein content in the deproteination stage. In the chitin extraction process, an infrared spectrum analysis (FTIR) was also carried out on the extracted chitin samples.
References
Abidin, N. A. Z., Kormin, F., Abidin, N. A. Z., Anuar, N. A. F. M., & Bakar, M. F. A. (2020). The potential of insects as alternative sources of chitin: An overview on the chemical method of extraction from various sources. International Journal of Molecular Sciences, 21(14), 1–25. https://doi.org/10.3390/ijms21144978
Alqarni, L. S., Algethami, J. S., EL Kaim Billah, R., Bahsis, L., Alorabi, A. Q., Alosaimi, E. H., Algethami, F. K., Lima, E. C., Wasilewska, M., & López-Maldonado, E. A. (2024). Synthesis and characterization of a crosslinked deacetylated chitin modified chicken bone waste-derived hydroxyapatite and TiO2 biocomposite for defluoridation of drinking water. International Journal of Biological Macromolecules, 282, 136839. https://doi.org/10.1016/j.ijbiomac.2024.136839
Anggraeni, A. S., Jayanegara, A., Laconi, E. B., Kumalasari, N. R., Windarsih, A., & Sofyan, A. (2024). Physicochemical and antibacterial properties of chitosan extracted from swimming crab shells and wooden grasshoppers using different extraction methods. Food Research, 8(3), 439–450. https://doi.org/10.26656/fr.2017.8(3).313
Bajaj, M., Winter, J., & Gallert, C. (2011). Effect of deproteination and deacetylation conditions on viscosity of chitin and chitosan extracted from Crangon crangon shrimp waste. Biochemical Engineering Journal, 56(1–2), 51–62. https://doi.org/10.1016/j.bej.2011.05.006
Ben Aoun, R., Trabelsi, N., Abdallah, M., Mourtzinos, I., & Mhamdi, R. (2024). Towards a greener future: Exploring the challenges of extraction of chitin and chitosan as bioactive polysaccharides. Materials Today Communications, 39, 108761. https://doi.org/10.1016/j.mtcomm.2024.108761
Cândido, W. L., Carneiro, A. de C. O., Vital, B. R., Demuner, I. F., Almeida, Ê. W. de, Silva, C. M. S. da, & Peres, L. C. (2024). Chloride leaching of eucalyptus wood particles by water for pellets production. Fuel, 367, 131548. https://doi.org/10.1016/j.fuel.2024.131548
Chakravarty, J., & Edwards, T. A. (2022). Innovation from waste with biomass-derived chitin and chitosan as green and sustainable polymer: A review. Energy Nexus, 8(May). https://doi.org/10.1016/j.nexus.2022.100149
Chatsuwan, N., Nalinanon, S., Puechkamut, Y., Lamsal, B. P., & Pinsirodom, P. (2018). Characteristics, Functional Properties, and Antioxidant Activities of Water-Soluble Proteins Extracted from Grasshoppers, Patanga succincta and Chondracris roseapbrunner. Journal of Chemistry, 2018, 1–11. https://doi.org/10.1155/2018/6528312
Davies, D. H., & Hayes, E. R. (1988). Determination of the degree of acetylation of chitin and chitosan (pp. 442–446). https://doi.org/10.1016/0076-6879(88)61054-8
Dong, H., Chen, K., Qian, Y., Sun, S., Zhao, Y., Ni, Z., Wang, Y., & Xu, K. (2024). A biomass composite based on natural deep eutectic solvent and magnetic chitosan for the solid phase extraction of PPCPs. Microchemical Journal, 204, 110986. https://doi.org/10.1016/j.microc.2024.110986
Duarte, M. ., Ferreira, M. ., Marvão, M. ., & Rocha, J. (2002). An optimised method to determine the degree of acetylation of chitin and chitosan by FTIR spectroscopy. International Journal of Biological Macromolecules, 31(1–3), 1–8. https://doi.org/10.1016/S0141-8130(02)00039-9
Hu, G., Miao, L., Gao, Y., Shao, S., Li, L., Zhang, R., Liu, S., Guo, Y., Yang, Y., & Wang, Y. (2024). Estimating the weathering time of the final instar exuviae of Dermestes frischii by ATR-FTIR spectroscopy and GC–MS analysis. Microchemical Journal, 206, 111484. https://doi.org/10.1016/j.microc.2024.111484
Jantzen da Silva Lucas, A., Quadro Oreste, E., Leão Gouveia Costa, H., Martín López, H., Dias Medeiros Saad, C., & Prentice, C. (2021). Extraction, physicochemical characterization, and morphological properties of chitin and chitosan from cuticles of edible insects. Food Chemistry, 343, 128550. https://doi.org/10.1016/j.foodchem.2020.128550
Kore, A., Subash, A., Naebe, M., & Kandasubramanian, B. (2024). Application and implementation of chitosan as a potential and sustainable adsorbent for rare earth metal recovery: A review. Hybrid Advances, 5, 100175. https://doi.org/10.1016/j.hybadv.2024.100175
Lawal, K. G., Nazir, A., Sundarakani, B., Stathopoulos, C., & Maqsood, S. (2024). Unveiling the effect of natural deep eutectic solvents-based date seed polyphenolic extract on the properties of chitosan-PVA films and its application in shrimp packaging. International Journal of Biological Macromolecules, 280, 135593. https://doi.org/10.1016/j.ijbiomac.2024.135593
Lu, Z., Zou, L., Zhou, X., Huang, D., & Zhang, Y. (2022). High strength chitosan hydrogels prepared from NaOH/urea aqueous solutions: the role of thermal gelling. Carbohydrate Polymers, 297, 120054. https://doi.org/10.1016/j.carbpol.2022.120054
Luo, W., Li, C., Wang, L., Qian, L., Li, D., Miao, L., Xiong, Y., Li, M., Tian, Y., & Li, H. (2024). Microwave humidity sensor based on shorted split ring resonator with interdigital capacitance and ?-Al2O3 nanoflakes/chitosan sensitive film for respiration monitoring. Sensors and Actuators B: Chemical, 413, 135869. https://doi.org/10.1016/j.snb.2024.135869
Machado, S. S. N., Silva, J. B. A. da, Nascimento, R. Q., Lemos, P. V. F., Assis, D. de J., Marcelino, H. R., Ferreira, E. de S., Cardoso, L. G., Pereira, J. D., Santana, J. S., Silva, M. L. A. da, & Souza, C. O. de. (2024). Insect residues as an alternative and promising source for the extraction of chitin and chitosan. International Journal of Biological Macromolecules, 254, 127773. https://doi.org/10.1016/j.ijbiomac.2023.127773
Mahboub, M. T., Hassan, M. I., Bream, A. S., Mohamed, A. F., & Abdel-Samad, M. R. K. (2022). Antibacterial and antiviral activities of chitosan nanoparticles from the American cockroach, Periplaneta americana. Journal of Applied Pharmaceutical Science, 12(3), 202–208. https://doi.org/10.7324/JAPS.2022.120321
Marei, N. H., El-Samie, E. A., Salah, T., Saad, G. R., & Elwahy, A. H. M. (2016). Isolation and characterization of chitosan from different local insects in Egypt. International Journal of Biological Macromolecules, 82, 871–877. https://doi.org/10.1016/j.ijbiomac.2015.10.024
Mohan, K., Ganesan, A. R., Muralisankar, T., Jayakumar, R., Sathishkumar, P., Uthayakumar, V., Chandirasekar, R., & Revathi, N. (2020). Recent insights into the extraction, characterization, and bioactivities of chitin and chitosan from insects. Trends in Food Science and Technology, 105(September), 17–42. https://doi.org/10.1016/j.tifs.2020.08.016
Psarianos, M., Ojha, S., Schneider, R., & Schlüter, O. K. (2022). Chitin Isolation and Chitosan Production from House Crickets (Acheta domesticus) by Environmentally Friendly Methods. Molecules, 27(15). https://doi.org/10.3390/molecules27155005
Reyes-Herrera, A., Pérez-Carrillo, E., Amador-Espejo, G., Valdivia-Nájar, G., & Ibarra-Herrera, C. C. (2022). Changes in the Chemical Composition of Edible Grasshoppers (Sphenarium purpurascens) Fed Exclusively with Soy Sprouts or Maize Leaves. Insects, 13(6), 510. https://doi.org/10.3390/insects13060510
Sahu, D. K., Rai, J., Rai, M. K., Banjare, M. K., Nirmal, M., Wani, K., Sahu, R., Pandey, S. G., & Mundeja, P. (2020). Detection of flonicamid insecticide in vegetable samples by UV–Visible spectrophotometer and FTIR. Results in Chemistry, 2, 100059. https://doi.org/10.1016/j.rechem.2020.100059
Salihu, R., Abd Razak, S. I., Ahmad Zawawi, N., Rafiq Abdul Kadir, M., Izzah Ismail, N., Jusoh, N., Riduan Mohamad, M., & Hasraf Mat Nayan, N. (2021). Citric acid: A green cross-linker of biomaterials for biomedical applications. European Polymer Journal, 146(January), 110271. https://doi.org/10.1016/j.eurpolymj.2021.110271
Sangwaranatee, N. W., Teanchai, K., Kongsriprapan, S., & Siriprom, W. (2018). Characterization and analyzation of chitosan powder from Perna Viridis shell. Materials Today: Proceedings, 5(6), 13922–13925. https://doi.org/10.1016/j.matpr.2018.02.041
Soetemans, L., Uyttebroek, M., & Bastiaens, L. (2020). Characteristics of chitin extracted from black soldier fly in different life stages. International Journal of Biological Macromolecules, 165, 3206–3214. https://doi.org/10.1016/j.ijbiomac.2020.11.041
SONG, H.-S., LEE, K.-T., PARK, S.-M., KANG, O.-J., & CHEONG, H.-S. (2003). Measurement of Deproteinization and Deacetylation of Chitin and Chitosan by Near Infrared Spectroscopy. Korean Journal of Fisheries and Aquatic Sciences, 36(2), 88–93. https://doi.org/10.5657/kfas.2003.36.2.088
Sorlier, P., Denuzière, A., Viton, C., & Domard, A. (2001). Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan. Biomacromolecules, 2(3), 765–772. https://doi.org/10.1021/bm015531+
Sun, X., Yu, J., Wei, Q., & Ren, X. (2023). Construction of chitosan-based supramolecular biofilm material for wound dressing based on natural deep eutectic solvents. International Journal of Biological Macromolecules, 236, 123768. https://doi.org/10.1016/j.ijbiomac.2023.123768
Vallejo-Domínguez, D., Rubio-Rosas, E., Aguila-Almanza, E., Hernández-Cocoletzi, H., Ramos-Cassellis, M. E., Luna-Guevara, M. L., Rambabu, K., Manickam, S., Siti Halimatul Munawaroh, H., & Loke Show, P. (2021). Ultrasound in the deproteinization process for chitin and chitosan production. Ultrasonics Sonochemistry, 72, 105417. https://doi.org/10.1016/j.ultsonch.2020.105417
Waldeck, J., Daum, G., Bisping, B., & Meinhardt, F. (2006). Isolation and Molecular Characterization of Chitinase-Deficient Bacillus licheniformis Strains Capable of Deproteinization of Shrimp Shell Waste To Obtain Highly Viscous Chitin. Applied and Environmental Microbiology, 72(12), 7879–7885. https://doi.org/10.1128/AEM.00938-06
Yuan, B.-Q., Yu, T.-H., Chen, S.-C., Zhang, Z.-Q., Guo, Z.-K., Huang, G.-X., Xiao, J., & Huang, D.-W. (2024). Physical and chemical characterization of chitin and chitosan extracted under different treatments from black soldier fly. International Journal of Biological Macromolecules, 279, 135228. https://doi.org/10.1016/j.ijbiomac.2024.135228
Yuan, Y., Hong, S., Lian, H., Zhang, K., & Liimatainen, H. (2020). Comparison of acidic deep eutectic solvents in production of chitin nanocrystals. Carbohydrate Polymers, 236(October 2019), 116095. https://doi.org/10.1016/j.carbpol.2020.116095
Zhang, X., Huo, D., Wei, J., Wang, J., Zhang, Q., Yang, Q., Zhang, F., Fang, G., Zhu, H., & Si, C. (2024). Synthesis of amino-functionalized nanocellulose by guanidine based deep eutectic solvent and its application in fine fibers retention. International Journal of Biological Macromolecules, 260, 129473. https://doi.org/10.1016/j.ijbiomac.2024.129473
Zhao, D., Huang, W. C., Guo, N., Zhang, S., Xue, C., & Mao, X. (2019). Two-step separation of chitin from shrimp shells using citric acid and deep eutectic solvents with the assistance of microwave. Polymers, 11(3). https://doi.org/10.3390/polym11030409
Zheng, X.-P., Tian, X.-Y., Chai, Y., Du, Y.-P., Zhang, Y.-C., & Zheng, Y.-Z. (2024). Production of 5-hydroxymethylfurfural from chitosan using choline chloride-based deep eutectic solvents as catalyst. Journal of Molecular Liquids, 413, 125982. https://doi.org/10.1016/j.molliq.2024.125
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Cindy Salsabilla Anjani, Hilman Imadul Umam, Teguh Pambudi, Azis Kemal Fauzie, Fajar Amelia Rachmawati Putri

This work is licensed under a Creative Commons Attribution 4.0 International License.